Detection of Escherichia coli enoyl-ACP reductase using biarsenical-tetracysteine motif.

نویسندگان

  • Hang Yang
  • Jin He
  • Fen Hu
  • Cao Zheng
  • Ziniu Yu
چکیده

Although the tetracysteine (TC) motif has been used as a tag, the binding stability between TC motif and biarsenical reagent against extreme conditions as well as its capacity as a quantitative tag remains not well developed. To reveal these problems, we chose enoyl-acyl carrier protein reductase (FabI), which was involved in the final step of elongation in the bacterial fatty acid biosynthesis, to be tagged by the TC motif. Taking enhanced green fluorescent protein (EGFP) tagged FabI as a control, we investigated the activities of various TC tagged FabIs (N-terminus, C-terminus, or both N- and C-terminus TC motif). The results showed that all the TC tagged FabIs had high enzyme activities while the EGFP tagged FabI exhaustively lost the activity. Beside this, the characteristics of the tag, including labeling stability against extreme conditions, capacity for quantitative analysis, and ability for in-cell labeling, were also investigated. We demonstrated for the first time that the binding between FlAsH reagent and TC motif was stable against high pressure, high field strength, high temperature, and ultrasound. Furthermore, we verified the potential of TC motif for quantitative analysis of target protein by different approaches, including SDS-PAGE, spectrofluorometry (SPF), and capillary zone electrophoresis (CZE).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Two Functional Enoyl-Acyl Carrier Protein Reductases of Enterococcus faecalis Do Not Mediate Triclosan Resistance

UNLABELLED Enoyl-acyl carrier protein (enoyl-ACP) reductase catalyzes the last step of the elongation cycle in the synthesis of bacterial fatty acids. The Enterococcus faecalis genome contains two genes annotated as enoyl-ACP reductases, a FabI-type enoyl-ACP reductase and a FabK-type enoyl-ACP reductase. We report that expression of either of the two proteins restores growth of an Escherichia ...

متن کامل

Mechanism and inhibition of the FabI enoyl-ACP reductase from Burkholderia pseudomallei.

OBJECTIVES As an initial step in developing novel antibacterials against Burkholderia pseudomallei, we have characterized the FabI enoyl-ACP reductase homologues in the type II fatty acid biosynthesis pathway from this organism and performed an initial enzyme inhibition study. METHODS A BLAST analysis identified two FabI enoyl-ACP reductase homologues, bpmFabI-1 and bpmFabI-2, in the B. pseud...

متن کامل

Mechanistic diversity and regulation of Type II fatty acid synthesis.

Fatty acid biosynthesis is catalysed in most bacteria by a group of highly conserved proteins known as the Type II fatty acid synthase (FAS) system. The Type II system organization is distinct from its mammalian counterpart and offers several unique sites for selective inhibition by antibacterial agents. There has been remarkable progress in the understanding of the genetics, biochemistry and r...

متن کامل

Escherichia coli enoyl-acyl carrier protein reductase (FabI) supports efficient operation of a functional reversal of β-oxidation cycle.

We recently used a synthetic/bottom-up approach to establish the identity of the four enzymes composing an engineered functional reversal of the -oxidation cycle for fuel and chemical production in Escherichia coli (J. M. Clomburg, J. E. Vick, M. D. Blankschien, M. Rodriguez-Moya, and R. Gonzalez, ACS Synth Biol 1:541–554, 2012, http://dx.doi.org/10.1021/sb3000782).While native enzymes that cat...

متن کامل

Evaluation of bactericidal activity of thymol-eugenol solution as a potential disinfectant agent

Aim: The emergence of nosocomial infections, which are mainly transmitted by contaminated instruments, there is an urgent need of a novel disinfecting agent, which can able to act by the novel method with less residual concentration. Evaluation of antibacterial activity of thymol-eugenol mixture for potential application as disinfectant agent. Methods: The reference strains of Escherichia coli,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Bioconjugate chemistry

دوره 21 7  شماره 

صفحات  -

تاریخ انتشار 2010